ASYMMETRIC SYNTHESIS OF PYRROLIZIDINONES BY RADICAL CYCLIZATION OF N-ALLYLIC PYROGLUTAMATES ^{1a}

Paul F. Keusenkothen^{1b} and Michael B. Smith*

Department of Chemistry, U-60, University of Connecticut Rm. 151, 215 Glenbrook Rd., Storrs, Connecticut 06269

Abstract: Ethyl S-pyroglutamate is converted to *N*-allylic-S C₅-iodomethyl-2-pyrrolidinone. Facile radical cyclization on treatment with AIBN and tributyltin hydride in refluxing benzene gives good yields of the C₆ substituted pyrrolizidin-2-one with excellent diastereoselectivity.

Radical cyclization of haloalkenes is an important tool for construction of carbocyclic rings in natural product synthesis.² An intermediate alkenyl radical is generated by treatment of haloalkenes with a radical initiator such as *azo-bis*-isobutyronitrile (AIBN) or by photochemical methods. Tributyltin hydride (Bu₃SnH) is usually added to transfer an hydrogen atom to the cyclized radical product. 1-Azabicyclo[m.n.0]alkanes are an important class of naturally occurring alkaloids of great interest to synthetic chemists.³ The pyrrolizidine alkaloids (m = n = 1), for example, possess important biological activities ranging from insect attractants or defensive substances^{3b} to anticholenergic^{3b} or antineoplastic activity.^{3b} Most of the synthetic routes to 1-azabicyclo[m.n.0] alkaloids rely on nucleophilic ring closures using Dieckmann or Aldol condensations.³ A few strategies use acid catalyzed ring closure routes. 3+2 Cycloadditions with nitrone derivatives also lead to efficient syntheses of these alkaloids.³ Radical cyclization has been applied sparingly to alkaloid syntheses but pyrrolizidines are well suited to this strategy.

Radical cyclization of heteroatom containing substrates is known for many alkenyl halides^{2,4} and two radical cyclization strategies have been used to construct pyrrolizidines. In the first Hart cyclized 5-thiophenyl-N-alkenyl-2-pyrrolidinones with AIBN and Bu₃ SnH,⁵ but produced mixtures of pyrrolizidines and indolizidines with poor diastereoselectivity and no asymmetric induction. More recently, Hart reported an asymmetric synthesis of (-)-swainsonine by radical cyclization of an asymmetric *N*-alkynyl-5-thiophenyl precursor.⁶ The chiral succinimide precursor was prepared from tartaric acid, and radical cyclization gave excellent diastereoselectivity and a 70% yield of the desired indolizidinone products. In a recent prolinol based strategy,⁷ Livinghouse prepared 1 via Wittig reaction with a BOCprotected prolinal. ⁸ Cyclization with Bu₃SnH/AIBN gave poor yields of the pyrrolizidine, but radical generation with n-(Bu₃Sn)₂/hv gave a 65:1 mixture of 2 and 3 in 58% yield.⁷ Pyrrolizidin-2-one 2 was converted to (-)-trachelanthamidine in two steps.⁷ Other non-radical prolinol strategies, involving intramolecular cyclization via carbanionic intermediates have been reported for the asymmetric synthesis of 'izidine' alkaloids such as septicine.⁹

S-Ethyl pyroglutamate (4) is prepared in high yield by reaction of glutamic acid with thionyl chloride and heating in ethanol¹⁰. Alkylation of 4 with a variety of allylic halides required 1.5 equivalents of powdered KOH, 20 mol% of Bu_4NBr as a phase transfer catalyst (analogous to the work of Takahata)¹¹ in THF but gave yields of only 5-10%. Sonication (ultrasonic cleaning bath) during the reaction led to good to excellent yields of the desired *N*-substituted lactams (81% with allyl bromide). The alkylation reaction did not racemize the C₅ hydrogen.

Standard LiBH₄ reduction of the ester gave only 0-10% yield of the requisite hydroxymethyl lactam. Reduction with lithium aluminum hydride on anhydrous silica gel,¹² however, gave 70-85% of the alcohol.¹³ Conversion of the hydroxymethyl moiety to the mesylate (one equivalent of CH₃SO₂Cl and one equivalent of alcohol in CH₂Cl₂ were treated with 1.1 equivalents of triethylamine at -78°)¹⁴ allowed formation of the iodomethyl derivative by Finkelstein exchange (10 equivalent of sodium iodide in refluxing acetone for 1 hour). In sharp contrast to the cyclization of 1, treatment of one equivalent of 5 with 2 equivalents of Bu₃SnH (5-10 mol% AlBN in refluxing benzene [5-25 mM], 4-12 hours) gave good yields of cyclized product, 6 (see Table 1). Iodolactam 5a gave 6a in 70% yield.¹⁵ In all cases except 5d, 7 (resulting from hydrogen transfer to the intermediate radical) was the only other product. Identification of 6 was straightforward via NMR and capillary GC/Mass spectral analysis.

(a) R²CH=C(R³)CHR¹Br /THF/**sonication**/Bu₄NBr/KOH (b) LiAlH₄/SiO₂ (c) CH₃SO₂Cl/NEt₃ (d) Nal/acetone (e) AIBN/ Bu₃SnH /PhH/reflux

As an example, asymmetric induction in 6a was confirmed $([a]_{25}^{D} = +20.8$ [EtOH, c. 0.0288 g/mL]) and NMR analysis clearly showed the C₆ methyl group to be *cis*- to the hydrogen at C_{7a} (*exo*-methyl). The proton at C_{7a} appears at 4.04 ppm; the methyl group at 1.09 ppm; the *exo*- proton at C₅ at 3.81 ppm and the *endo*-hydrogen at C₅ at 2.42 ppm. The COSY spectrum shows strong coupling of the methyl group and C₆ hydrogen, which appears at 2.33 ppm, but no coupling of the C_{7a} and C₆ hydrogens. Enhanced long range coupling (W-type) in the COSY for the C_{7a} hydrogen and the *exo*-C₅ hydrogen is apparent. Similar long range coupling for the C₆-C_{7a} hydrogens was absent, strongly suggesting the methyl

group is exo (cis-) to the C_{7a} hydrogen. There was no enhancement for these signals in the NOESY spectrum.

Similar *exo*-selectivity was observed in the prolinol based system.² Models show a steric interaction of the alkenyl molety with the pyrrolidinone ring in the *endo*-transition state which is absent in the *exo*- transition state. No significant interaction of the C_{7a} hydrogen was apparent in any transition state leading to cyclized product. Although the energy differential between these rotamers may be small, the diastereoselectivity for the *exo*-transition state was clear. A single product was detected in the ¹H NMR and by GC/MS analysis. Further analysis by HPLC (C_{18} -reverse phase, acetonitrile) showed less than 1% of a peak which *may* be the *endo*- diastereomer. Analysis by GC/MS showed that no indolizidin-2-one was formed in the cyclization of **5a**.¹⁶ The diastereoselectivity of this reaction appears comparable to that of the prolinol-based cyclization.

lodolactams 5b and 5c were cyclized to 6b and 6c, respectively, under identical conditions (see Table 1) with *exo*-selectivity. Cyclization of 5d introduced the problem of selectivity between the methylene and methyl moieties. A 30:70 mixture of 6d and 6-methylindolizidin-2-one was isolated, the remainder of the product being 7d although this was greatly diminished at concentrations of less than 5 mM. The product distribution suggests a slight preference for the rotamer with the methylene group *endo*-. The steric encumbrance inherent to an *endo*- methyl or methylene probably leads to a rotamer in which the terminal methylene carbon is exposed to attack, giving the six-membered ring. We did *not* observe indolizidin-2-one products in any other case¹⁶ but 7 was the by-product in reactions of 5a-f.

<u>5/6</u> ª	<u>R</u> ¹ .	<u>R</u> 2	<u>R</u> ²	<u>Time (hr)</u>	Conc (mM)	<u>%</u> <u>6</u> a,b
a	н	Н	Н	4	10	70
b	н	Ph	н	3	25	72
С	н	Me	н	12	3	52
đ	н	н	Me	12	5	96°
e	Me	н	н	12	4.3	54
f	-CH ₂ CH ₂ CH ₂ -		н	12	6	58

Table 1. Radical Cyclization of N-Allylic-5-iodomethyl-2-pyrrolidinones.

^a Satisfactory analysis for all new compounds ^b remaining product is 7

c a 70:30 mixture of 6-methylindolizidin-2-one and 6d

Substitution at the position a to the nitrogen, R¹ in 5e and 5f leads to the expected mixture of diastereomers. The methyl group at C₆ is *exo*- but the 70:30 diastereomeric mixture in 5e is reflected in the cyclized product, 6e. The conformational bias for the *equatorial* isomer in 5f leads to some selectivity for the *trans*-fused B-C ring in 6e. Only one product was easily discernible in the ¹H NMR but HPLC shows a 30:1 mixture of diaster-eomers for 6f.

The facility of the pyroglutamate based radical cyclization under milder conditions than the prolinol based cyclization is obvious from these results. The high preference for exo-substitution during the cyclization is apparent. COSY and NOESY are powerful tools for determining the relative stereochemistry of substituents in these pyrrolizidinones. Modification of this pyroglutamate strategy to a C_5 -alkenyl *N*-iodoethyl derivative is underway and will allow the asymmetric synthesis of a variety of naturally occurring pyrrolizidine alkaloids.

LITERATURE CITED

- (a) Presented at the 197th Meeting of the American Chemical Society, ORGN 112, Dallas, TX, 4/11/89; (b) Taken from the M.S. thesis of P.F.K.
- 2. Curran, D.P. Synthesis, 1988, 417, 489.
- (a) Howard, A.S.; Michael, J.P. in "The Alkaloids", Vol. 28, Brossi, A. (Ed); Academic Press, Orlando, **1986**, pp. 183-308; (b) Wróbel, J.T. in "The Alkaloids", Vol. 26, Brossi, A. (Ed); Academic Press, Orlando, **1985**, pp. 327-384; (c) Suffness, M.; Cordell, G.A. in "The Alkaloids", Vol. 25, Brossi, A. (Ed); Academic Press, Orlando, pp. 1-353; (d) Aslanov, Kh.A.; Kushmuradov, Yu.K.; Sadykov, A.S. in "The Alkaloids", Brossi, A. (Ed); Vol. 31; **1987**, pp. 118-193; (e) Numata, A.; Ibuka, T. in "The Alkaloids", Vol. 31, Brossi, A. (Ed); Academic Press, Orlando, **1987**, pp. 194-316.
- (a) Padwa, A.; Nimmesgern, H.; Wong, G.S.K. J. Org. Chem., **1985**, 50, 5620; (b) Padwa, A.; Dent, W.; Nimmesgern, H.; Venkatramanan, M.K.; Wong, G.S.K. Chem. Ber., **1986**, 119, 813; (c) Watanabe, Y.; Ueno, Y.; Tanaka, C.; Okawara, M.; Edno, T. Tetrahedron Lett, **1987**, 28, 3953.
- (a) Choi, J-K.; Hart, D.J.; Tsai, Y-M. Tetrahedron Lett., 1982, 23, 4765; (b) Burnett, D.A.; Choi, J-K.; Hart, D.J.; Tsai, Y-M. J. Am. Chem. Soc., 1984, 106, 8201; (c) Hart, D.J.; Tsai, Y-M. Ibid., 1984, 106, 8209; (d) Choi, J-K.; Hart, D.J. Tetrahedron, 1985, 41, 3959; (e) Hart, D.J.; Tsai, Y-M. J. Am. Chem. Soc., 1982, 104, 1430; (f) Kano, S.; Yuasa, Y.; Asami, K.; Shibuya, S. Chem. Lett., 1986, 735.
- 6. Dener, J.M.; Hart, D.J.; Ramesh, S. J. Org. Chem., 1988, 53, 6022.
- 7. Jolly, R.S.; Livinghouse, T. J. Am. Chem. Soc., 1988, 110, 7536.
- 8. Parker, K.A.; O'Fee, R. J. Am. Chem. Soc., 1983, 105, 654.
- 9. Russel, J.H.; Hunziker, H. Tetrahedron Lett., 1969, 4035.
- 10. Silverman, R.B.; Levy, M.A. J. Org. Chem., 1980, 45, 815.
- 11. Takahata, H.; Hashizume, T.; Yamazaki, T. Heterocycles, 1979, 12, 1449.
- 12. Kamitori, Y.; Hojo, M.; Masuda, R.; Inoue, T.; Izumi, T. Tetrahedron Lett., 1983, 24, 2575.
- 13. Keusenkothen, P.F.; Smith, M.B. Synth. Commun., submitted.
- 14. Durst, T.; Tin, K.C. Can. J. Chem., 48, 1970, 845.
- Addition of 1.30 g (4.90 mmol) of 5a, 0.45 g (9.80 mmol) of Bu₃SnH and 0.05 g (0.3 mmol) of AIBN in 500 mL of dry benzene was followed by reflux for 4 hours. The solution was cooled, concentrated *in vacuo* and chromatography (silica gel/ether) gave 0.48 g (3.45 mmol, 70%) of 6a: 1H NMR (CDCl₃) δ 1.09 (d, 3H), 1.61 (m, 4H), 2.33 (m, 1H), 2.42 (m, 1H), 2.61 (m, 2H), 3.81 (dd, 1H) and 4.04 ppm (m, 1H); ¹³C NMR (CDCl₃) *δ* 19.6 (q), 28.3 (t), 34.5 (t), 34.9 (t), 39.7 (t), 49.3 (t), 60.2 (d) and 175.3 ppm (s); Mass spectrum (m/z, rel. intensity): 139 (P,50), 124 (3), 110 (2), 97 (100), 84 (12), 69 (50), 55 (40) and 41 (45).
- Indolizidin-2-ones show a pronounced P-1 peak in the mass spectrum. This peak was missing in all pyrrolizidin-2-ones, allowing differentiation by GC/MS.

(Received in USA 1 March 1989)